"多孔介质燃烧技术在锌冶炼加工行业的开发应

用"成果登记公示信息

成果名称:	多孔介质燃烧技术在锌冶炼加工行业的开发应用
完成单位:	中科卓异环境科技(东莞)有限公司,中金岭南有色金属有色股份有限公
	司,松山湖材料实验室
完成人员:	付超,任志恒,余刚,郑金华,战斗,梁修兵,钟勇,曾平生,朱瑞峰,郭学广,刘冬
	根,孔凡磊,郑关平,朱凯,陈录,项往
研究起止日期:	2021-05-10 至 2021-06-07
成果应用行业:	制造业
高新技术领域:	新能源与节能
学科分类:	
评价单位:	中国有色金属工业协会
评价日期:	2021-06-08
成果简介:	多孔介质燃烧是一种燃料和氧化剂在多孔介质孔隙内燃烧的方式, 传热形式以高温固体辐射为主,与自由火焰燃烧方式相比,燃烧速率和
	燃烧强度高,燃烧区域宽,温度分布均匀,燃烧效率高,污染物排放低,
	贫燃极限低,负荷调节比大,是国际燃烧学界公认的21世纪最新一代
	燃烧技术。该技术在国外已有商业化应用,处于应用快速上升阶段,而
	国内对多孔介质燃烧技术的研究比较充分,但是还没有任何商业应用。
	阻碍该技术商业应用的主要因素是多孔介质材料不过关。
	本项目研发的碳化硅多孔陶瓷材料,实现了低成本与高性能的完美
	结合,强度、热导率和抗热震性能均超过欧美同类材料,是国内唯一能
	满足多孔介质燃烧商业应用需求的材料,解决了阻碍多孔介质燃烧这一
	国际前沿技术在国内广泛应用的"卡脖子"难题。
	1、技术创新程度
	针对有色金属冶炼生产过程燃烧效率较低、氮氧化物排放高、金属
	易烧损等难题,自主研发了高性能碳化硅梯级多孔陶瓷材料,突破了多
	孔介质燃烧技术商业化应用的瓶颈,开发出国内首台(套)锌冶炼加工 行业多孔介质燃烧系统,实现了工程化应用。技术创新程度高。
	1) 业多九斤灰
	基于碳化硅梯级多孔陶瓷材料研发的新一代多孔介质燃烧系统,抗
	热震循环次数超过 10000 次, 可在 1400°C 高温下长期稳定工作; 应用
	工程相比改造前,实现节气30%以上,金属锌烧损率减少49%;氮氧
	化物排放小于 30mg/m3,一氧化碳排放小于 10mg/m3; 加热均匀, 温差
	在±3 笆以内。技术指标先进。
	3、技术难度和复杂程度
	1)提升了多孔陶瓷材料的抗热震性能,延长多孔介质燃烧系统的
	使用寿命;
	2)设计研制了独特的燃烧器结构,保证了气体在各种复杂工况下

的均匀分布;

3)开发了先进的控制与保护系统,确保多孔介质燃烧系统的安全性和稳定性。实现了燃烧器与锌冶炼生产工况的高度匹配。技术难度大、复杂程度高。研发的多孔介质燃烧系统已经在韶关冶炼厂的2#精炼炉、9#精炼炉、保温溜槽、1#锌锭生产线、2#锌锭生产线(共计14套)安全、稳定运行十个月,完成2万吨锌液生产。技术成熟,重现性良好。

4、技术重现性和成熟度

解决锌冶炼生产过程燃烧效率较低、氮氧化物排放高、金属易烧损等难题,显著降低生产成本,有效提升产品质量。有力推动了锌冶炼清洁生产技术的科技进步,具有显著的市场竞争力。

5、技术创新对推动行业科技进步和提高市场竞争能力的作用 该技术在韶关冶炼厂全面应用,预计每年可节气 750 万立方米,价值超过 2000 万元;实现减碳 1 万余吨;减少锌渣量约 1600 吨,节约生 产成本 1000 万元。为推动我国有色行业"碳达峰"、"碳中和"目标的实现提供技术支撑,具有良好的 经济社会和环境效益,应用前景广阔。