"大孔隙卵石生态混凝土研究与应用"成果登记

公示信息

成果名称:	大孔隙卵石生态混凝土研究与应用
完成单位:	广东省水利水电第三工程局有限公司,广东义方致远科技有限责任公司
完成人员:	邓年生,王韶,刘利涛,吴雄波,季骅,徐志红,邓远新,孙龙,张力文,任元林,黄
	汉林,张洛川,郑楷涛,王宁,孙咏
研究起止日期:	2019-01-01 至 2022-12-31
成果应用行业:	建筑业
社会经济目标:	环境保护
学科分类:	
评价单位:	广东省土木建筑学会
评价日期:	2023-04-13
成果简介:	长期以来,人们对河道、湖泊、库坝等地表水体的堤岸治理仅侧重
	于水土保持、防洪、航运等方面的需求,普遍采用浆砌石、现浇混凝土
	护坡、预制混凝土块体护坡等硬质护坡结构,阻隔了水体与陆地生态系
	统中各要素之间的物质、能量和信息的交流。水体被封闭在河道中,生
	物多样性降低,生态系统脆弱,自净能力下降,河流对外部污染负荷的
	抗冲击能力削弱甚至失去。
	改变现有的硬质化堤岸为类似天然的生态型河堤岸成为河流治理
	的新的工程理念。构建仿天然状态的透水性岸坡将是改善微污染水体生
	态系统的重要措施。水体岸坡是生态系统的重要组成部分,其护砌方式
	必然会对生态系统产生重要影响,因此,水体岸坡的生态化建设及其功
	能探讨逐渐成为人们关注的热点问题。人们开始研究大孔隙生态混凝
	土,希望其同时满足两种功能:一是有一定的强度,满足实际工程对混
	凝土强度的要求; 二是混凝土自身存在一定比例的孔隙, 具有透水、透
	气性能, 地表水和混凝土底部土壤中的水分可以进行循环, 混凝土内部
	及表层均可有动植物生长。
	本项目在连山县中小河流治理过程中,EPC总承包项目部依据 2014
	年度广东省水利科技创新项目《广东省中小流域保护及水生态环境体系)
	建设》的要求,完成了大孔隙卵石生态混凝土配合比试验并成功应用于
	连山县永丰河(二期)治理工程、太保河(二期)治理工程及上帅河(二 期)治理工程 EPC 总承包项目中,在恢复自然景观的同时,保持了水
	新
	外現与個地元整的生态內地, 然而关究女生与生态理心开重的建议及后 理目的。
	生日 np
	砌石护坡、普通混凝土护坡技术相,比大孔隙卵石生态混凝土护坡植物
	成活率高,绿化效果好,可减少的植株补种的费用;因大孔隙卵石生态
	混凝土的空隙率较高,与普通混凝土护坡相比,减少混凝土用量约 20%;
	一对于坡面生态系统的修复、植被恢复和美观具有无可比拟的优势;且现一
	场浇筑施工难度小,操作简便,施工效率高,工程造价低,经济效益显
	NOOD TO A TO WILLIAM THE THE THE TO A TO WILL THE

著。

大孔隙卵石生态混凝土可持续性生态护岸、调节、改善和净化相关 水体的水质,降低环境污染,减少对生物圈的破坏,减少资源的消耗, 最大限度的提高资源、材料的利用,社会效益显著。